Swarm Intelligence Algorithms for Portfolio Optimization
نویسندگان
چکیده
Swarm Intelligence (SI) is a relatively new technology that takes its inspiration from the behavior of social insects and flocking animals. In this paper, we focus on two main SI algorithms: Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). An extension of ACO algorithm and a PSO algorithm has been implemented to solve the portfolio optimization problem, which is a continuous multi-objective optimization problem.. The portfolio optimization model considered in this paper is based on the classical Markowitz mean-variance theory. The results show ACO performs better than PSO in the case of small-scale and large-scale portfolio, but in the case of medium-scale portfolio, PSO performs a better than ACO technique.
منابع مشابه
Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem
Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...
متن کاملKrill herd (KH) algorithm for portfolio optimization
This paper presents novel krill herd (KH) nature-inspired metaheuristics for solving portfolio optimization task. Krill herd algorithm mimics the herding behavior of krill individuals. The objective function for the krill movement is defined by the minimum distances of each individual krill from food and from higher density of the herd. Constrained portfolio optimization problem extends the cla...
متن کاملFirefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem...
متن کاملSolving Fractional Programming Problems based on Swarm Intelligence
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to s...
متن کاملUsing quantum-behaved particle swarm optimization for portfolio selection problem
One of the popular methods for optimizing combinational problems such as portfolio selection problem is swarmbased methods. In this paper, we have proposed an approach based on Quantum-Behaved Particle Swarm Optimization (QPSO) for the portfolio selection problem. The particle swarm optimization (PSO) is a well-known population-based swarm intelligence algorithm. QPSO is also proposed by combin...
متن کامل